“机器学习泰斗”乔丹:AI发展不能忽视集体性、不确定性和激励机制
缺乏对集体性、不确定性和激励机制的关注,是当前对人工智能的讨论中缺失的三个方面。9月5日,在2024 Inclusion·外滩大会开幕主论坛上,“机器学习泰斗”、美国“三院院士”迈克尔·乔丹带来对人工智能的最新洞见。
迈克尔·乔丹认为,人工智能落地产业,需要形成互相协作的集体;要构建人工智能的协作系统,必须要引入经济学的“激励”视角。
在外滩大会的主论坛上,迈克尔·乔丹再次谈到人工智能的不确定性。“ChatGPT,你确定你刚生成的是对的吗?”他指出,当前的人工智能系统很难表达它真正学到哪些知识,也没有能力表达它有多确定。相较之下,人类在面对不确定性时表现出色,尤其是集体协作共同应对时。
因此,迈克尔·乔丹建议不仅单独设备要具备一定智能,人工智能更要通过协同体现在整体系统层面。他指出,仅仅将人类的智慧融入超级智能计算机中是不够的,现代信息技术在医疗、交通、金融科技和商业领域的应用,需要集体性、去中心化的智能系统。
迈克尔·乔丹进一步探讨了不确定性与集体性的关系。他指出,人类在集体协作时能够更好地应对不确定性,但如何让当前的AI系统也具备类似的集体协作能力,仍是一个未解的关键问题。他认为,微观经济学视角是当前AI研究的一个缺失。
“激励机制”是市场经济和集体智能的关键因素,“AI拥有海量的数据,但有些不能生成价值,通过设计激励机制才能驱动AI智能体贡献和协作。”迈克尔·乔丹提出了“三层数据市场”模型,其中用户、平台和数据买家通过“出让数据”“购买数据”“提供服务”形成了闭环。
他强调,数据购买者也就是企业可以结合“数据和服务”建立与用户的激励机制,从而为他们带来真正的价值。
对此,迈克尔·乔丹援引了统计契约理论,这是一种结合了统计学和经济学的新型理论。在契约理论中,代理人拥有私有信息,而委托人通过激励机制形成了数据和服务相互促进的市场,维持了供需双方的利益平衡。
全球范围内对数据隐私的监管不断增加,他也建议“我们可以通过非一致的隐私要求进一步提高用户效用,对低成本平台施加更高的要求。”
迈克尔·乔丹教授是机器学习领域的先驱,通过在机器学习、概率学、统计学以及图模型这四者间建立联系,为机器学习奠定了数学与计算基础。他曾获得IEEE约翰·冯·诺依曼奖章、国际人工智能联合会议卓越研究奖和2022年第一届世界顶尖科学家协会奖。
上游新闻记者 杨昕华
- 免责声明
- 本文所包含的观点仅代表作者个人看法,不代表新火种的观点。在新火种上获取的所有信息均不应被视为投资建议。新火种对本文可能提及或链接的任何项目不表示认可。 交易和投资涉及高风险,读者在采取与本文内容相关的任何行动之前,请务必进行充分的尽职调查。最终的决策应该基于您自己的独立判断。新火种不对因依赖本文观点而产生的任何金钱损失负任何责任。