开箱大模型营销神器,满眼都是:有劲、有用、有意思
大模型对百度的重构,十分迅捷地渗入到了商业腹地。
怎么说?就看现在的互联网广告投放模式,那真是大大变样。
比如想整个营销方案,只要把需求“说”给大模型听,idea就能自动生成。
投放广告全流程,也都能通过跟AI的对话直接搞定。
而如果我们揭开全新表象再往底层技术探索,就会发现:
百度商业营销的底层技术引擎,已经被大模型重构。
驱动以上基于自然语言交互的营销新范式的,正是百度全新AI商业引擎——扬楫。
何为扬楫?
用百度自己的话说,这是百度营销的新一代“根技术”:
如此看来,百度这波是实实在在自己颠覆了自己。
但问题是,怎么颠覆的?
开箱扬楫重构的核心,自然是大模型。
“年初到现在,我们推出了很多产品,它们共同构建了一艘航行在商业大海的大船。”百度商业研发部总监&商业AIGC平台负责人刘林介绍道,扬楫,其实相当于这条AI Native巨轮上的发动机。
而如果展开来说,扬楫相较于传统的商业引擎,是用生成式AI全面重构了定向、创意、机制、模型、架构几大关键环节。
通过这几方面方面取得核心突破,在定向效率、分配效率、投放效果、建模效率上均有显著提升,推动漏斗扁平化,大幅提升了上下游的一致性和漏斗效率的天花板,实现效率效果全局最优。
第一重核心变化,来看生成式定向。
商业定向指的是对广告受众的筛选过程,也就是给不同的人推荐不同的广告。
在过去,从技术的角度来说,商业引擎采用的策略是“度量式定向”。简单理解,就是通过深度学习将用户和广告映射到同空间的向量,通过度量用户和广告向量之间的距离来找出用户“可能最想看”的那个广告。
不难看出,这种方式多少有点简单粗暴,区分度不足,召回效率天花板有限,同时为了弥补有效性的不足,往往需要很高的召回量,下游需要层层筛选这些结果,而漏斗各层的优化目标及特征不尽相同,导致整体检索效率有损。
大模型的引入,有效地压缩了这样层层累加折损效率的“漏斗”:
基于大模型的理解能力、推理能力和生成能力,从最上游开始,扬楫就能够根据提示词定向生成“用户更想点击”的广告,大大提升召回广告的有效性。
百度商业研发首席架构师李双龙向我们透露,生成式定向的目标是能将广告召回的有效性提升10倍以上,召回结果的数量减少90%。
第二重核心变化,也就是与生成式定向紧密关联的生成式创意。
目前,扬楫已经借助大模型的理解、总结、提取、推理、检索、生成各项能力,实现用生成式大模型重构创意文案的功能。
同时,扬楫能基于客户和用户的需求表达、落地页内容通过大模型自动生成和优选出最合适的创意
基于文心大模型,扬楫自研了面向广告营销文案的生成大模型,建立了面向营销文案生成的三阶段训练范式,实现了对通用大模型底座的商业知识和多重反馈的增强,显著提升了广告营销文案的生成质量和转化效率。
根据百度营销披露的当前成绩,生成式创意已覆盖的超过18万客户,覆盖部分点击提升了10%,转化提升了接近9%。
举个例子。
百度营销前段时间发布的AIGC营销创意生产平台擎舵,B端企业主通过其创意生成能力,可以实现2分钟生成100条营销创意文案,一键生成营销海报,5分钟制作一支完整的数字人口播视频。
在这些创意物料的投放过程中,扬楫会发挥重要作用,将营销广告精准传递到用户,实现高效精准的需求满足,大幅提升营销效率。
此外,扬楫还构建了新一代智能广告拍卖框架。
拍卖机制,是指通过分配函数和计费函数的设计,来影响平台的广告位资源以及参与各方的利益分配。
传统拍卖机制主要基于经济学方法实现,存在的问题是,实际复杂的拍卖过程往往不能符合经济学的原理假设,导致简化建模推导出来的规则实际并非最优解。
大模型的引入,使得绕开经济学方法、直接依靠深度神经网络表达拍卖机制成为可能。
目前,端到端拍卖已经在扬楫落地,实现了数据驱动的全局最优广告分配和计费,显著提升了系统的广告分配效率。
除上述提到的三点外,扬楫带来的核心变化,还包括两个基础技术“底座”。
第一个底座是点击转化预测模型,模型技术范式实现从Sparse记忆到Dense推理的革新,通过网络推理来逐步取代海量人工精细化的特征组合设计、烟囱式的场景化建模等,实现模型泛化能力的大幅突破。
第二个底座是工程架构,一方面实现整体检索架构的扁平化重构,同时也基于强大的推理性能优化、强大的算子并行能力来实现生成式大模型在线规模化部署。
不过,纵使面对这么多“被颠覆”,刘林还是坚持认为,一些核心的东西需要去延续。比如整个优化的方法、整个对于业务的理解、行业的洞察等等。
扬楫是如何炼成的不难看出,商业引擎扬楫带来的影响才刚刚开始,并会进一步影响技术范式。
更值得关注的一点是,扬楫并非从0起步。
朝更根本处探寻,百度能动作如此之快地凭借扬楫对营销业务“动刀”,离不开背后长期的技术积累和成熟的基础设施。
更具体一点可以追溯到今年3月,百度创始人、董事长兼首席执行官李彦宏的一次明确表达:
现在,扬楫就是这套打法的实践——
芯片层:自研的昆仑芯片框架层:开源、灵活的飞桨深度学习框架模型层:自研的预训练文心大模型应用层:扬楫支撑的系列AI Native产品,如轻舸、擎舵、观星盘、智能商家经营平台等有这样的基础设施支撑和应用产品矩阵,就不难理解为什么百度选择在这个节点打造和推出扬楫——
大模型技术绝非概念和一时热闹,而是天时地利人和加持下的厚积薄发。
时代潮流的推动,公司上下的决心,积累且推进研发的技术……
不过,哪怕拥有诸多便利因素,仍有些问题摆在眼前,需要百度花时间去攻克。
其中最基础也是最重要的,想实现广告主“说人话”和百度的营销系统的丝滑无缝连接,靠的是扬楫具备的大模型能力。
而让大模型跑起来,最需要的就是算力。但全球大模型热的背景下,AI算力供应紧张是有目共睹的。
除了算力这样的外部影响条件,本身还有“待在舒适圈”的惯性思维存在——
至此,我们勾勒出扬楫炼成的秘籍。
大模型重构商业营销大模型正重构包括商业在内的一切领域。
从技术的视角来观察,敢于拥抱变革、善于应对挑战的公司往往身先士卒,也更有概率分取第一杯羹。
百度作为这一技术领域最受关注的公司之一,也释放了这样一种信号:
在互联网营销领域,新技术正在改变原有的评价标准,而新的机会也正在其中显现。
对于整个行业而言,技术变革不仅仅改变了原有的评价标准,需求的充分表达和经营的精准管理这两大营销要素,正在大模型时代被更高效地链接到一起。
广告营销的门槛、成本正因此而降低,同时更加精准的个性化广告正在成为可能。技术漏斗的扁平化正在带来人机协作的新范式。
在此之中,一方面,能否充分利用大模型的能力,成为能否在商业大海中遨游的新的评判指标。
另一方面,对业务的深入理解,对行业的深刻洞察,将成为核心受到关注的专业价值。
于是,问题也已经明确——
未来已来,身处其中的你,准备好了吗?
- 免责声明
- 本文所包含的观点仅代表作者个人看法,不代表新火种的观点。在新火种上获取的所有信息均不应被视为投资建议。新火种对本文可能提及或链接的任何项目不表示认可。 交易和投资涉及高风险,读者在采取与本文内容相关的任何行动之前,请务必进行充分的尽职调查。最终的决策应该基于您自己的独立判断。新火种不对因依赖本文观点而产生的任何金钱损失负任何责任。