首页 > AI资讯 > 最新资讯 > ICLR2022cosFormer:重新思考注意力机制中的Softmax

ICLR2022cosFormer:重新思考注意力机制中的Softmax

新火种    2023-10-29

导读:Transformer在自然语言处理、计算机视觉和音频处理方面取得了巨大成功。作为其核心组成部分之一,Softmax Attention模块能够捕捉长距离的依赖关系,但由于Softmax算子关于序列长度的二次空间和时间复杂性,使其很难扩展。针对这点,研究者提出利用核方法以及稀疏注意力机制的方法来近似Softmax算子,从而降低时间空间复杂度。但是,由于误差的存在,效果往往不尽如人意。

我们(商汤多模态研究组)认为,近似操作本身存在的误差使得其效果很难超越Softmax Attention。我们的观点是,与其近似Softmax,不如设计一种方式代替Softmax,并且同时降低时间空间复杂度。因此,本文提出了名为cosFormer的方法,在时间空间复杂度关于序列长度为线性复杂度的同时,其性能接近或者超越Softmax Attention,并在LRA benchmark上取得SOTA结果。我们的设计核心理念基于两点,首先是注意力矩阵的非负性,其次是对局部注意力的放大(非极大值抑制)。

本文主要介绍已收录于ICLR 2022的一篇文章 cosFormer : RethinkingSoftmaxinAttention。

ICLR 2022 cosFormer:重新思考注意力机制中的Softmax

论文地址:https://arxiv.org/abs/2202.08791

部分开源代码:https://github.com/OpenNLPLab/cosFormer

ICLR 2022 cosFormer:重新思考注意力机制中的Softmax

图片表示各种transformer在LRA benchmark上的表现,其中y轴表示性能,x轴表示速度,圆圈大小表示内存,我们提出的cosFormer取得了明显的优势。

一、背景

ICLR 2022 cosFormer:重新思考注意力机制中的Softmax

3、Softmax的两大性质

我们经过分析以及实验,归纳出Softmax Attention中比较重要的性质,这两个性质可以指导我们的模型设计:

1.注意力矩阵的非负性

2.局部注意力的放大(非极大值抑制)

ICLR 2022 cosFormer:重新思考注意力机制中的Softmax

所以我们的方法需要在加了reweighting操作后也更加集中在对角线附近。注意并非所有的有类似权重的函数均适用,这个reweighting的函数需要跟前面的QK一样可以拆分成两个矩阵的乘法的形式。

至此,就可以引入我们的cosFormer了。

二、cosFormer

1、方法

我们的方法基于线性Attention,首先给出符号定义:

ICLR 2022 cosFormer:重新思考注意力机制中的Softmax

ICLR 2022 cosFormer:重新思考注意力机制中的Softmax

2、实验结果

我们在单向模型,双向模型以及LRA benchmark上测试了我们的方法,均取得了非常不错的效果。

单向语言模型,指标表示困惑度(越低越好):ICLR 2022 cosFormer:重新思考注意力机制中的Softmax

论文地址:https://arxiv.org/abs/2202.08791

相关推荐
免责声明
本文所包含的观点仅代表作者个人看法,不代表新火种的观点。在新火种上获取的所有信息均不应被视为投资建议。新火种对本文可能提及或链接的任何项目不表示认可。 交易和投资涉及高风险,读者在采取与本文内容相关的任何行动之前,请务必进行充分的尽职调查。最终的决策应该基于您自己的独立判断。新火种不对因依赖本文观点而产生的任何金钱损失负任何责任。