首页 > 注意力

注意力

  • 丢掉注意力的扩散模型:Mamba带火的SSM被苹果、康奈尔盯上了

    替代注意力机制,SSM 真的大有可为?为了用更少的算力让扩散模型生成高分辨率图像,注意力机制可以不要,这是康奈尔大学和苹果的一项最新研究所给出的结论。众所周知,注意力机制是 Transformer 架构的核心组件,对于高质量的文本、图像生成都至关重要。

  • ICLR2022cosFormer:重新思考注意力机制中的Softmax

    导读:Transformer在自然语言处理、计算机视觉和音频处理方面取得了巨大成功。作为其核心组成部分之一,Softmax Attention模块能够捕捉长距离的依赖关系,但由于Softmax算子关于序列长度的二次空间和时间复杂性,使其很难扩展。针对这点,研究者提出利用核方法以及稀疏注意力机制的方法

  • Softmax注意力与线性注意力的优雅融合,AgentAttention推动注意力新升级

    来自清华大学的研究者提出了一种新的注意力范式——代理注意力 (Agent Attention)。近年来,视觉 Transformer 模型得到了极大的发展,相关工作在分类、分割、检测等视觉任务上都取得了很好的效果。然而,将 Transformer 模型应用于视觉领域并不是一件简单的事情。

  • EPSANet:计算机视觉注意力论文解读

    转载:Bestsong简介(1)Pyramid Split Attention Block用于增强特征提取(2)即插即用,可将Pyramid Split Attention Block取代ResNet的3×3卷积,提出基准网络ESPANet(3)目标分类与目标检测任务达到state-of-the-a

  • 把注意力计算丢给CPU,大模型解码吞吐量提高1.76~4.99倍

    CPU+GPU,模型KV缓存压力被缓解了。来自CMU、华盛顿大学、Meta AI的研究人员提出MagicPIG,通过在CPU上使用LSH(局部敏感哈希)采样技术,有效克服了GPU内存容量限制的问题。与仅使用GPU的注意力机制相比,MagicPIG在各种情况下提高了1.76~4.99倍的解码吞吐量,并

  • 少于两层的transformer,且只有注意力块,GPT-3:你怕不是搞事情?

    只有一层或两层、且只有注意力块的transformer,在性能上有望达到96层、兼具注意力块与MLP块的GPT-3的效果吗?作者 | Mordechai Rorvig编译 | bluemin编辑 | 陈彩娴在过去的两年里,基于Transformer架构开发的大规模语言模型在性能(如语言流畅度)上达到

  • 奥尔特曼新年发文:OpenAI开始将注意力转向“超级智能”

    财联社1月6日讯(编辑 周子意)OpenAI首席执行官Sam Altman在1月6日的最新个人博客中写道,OpenAI将有信心构建通用人工智能(AGI),并且公司已经开始将目标转向“超级智能(superintelligence)”。奥尔特曼还指出,“我们热爱现在的产品,但我们在这里是为了辉煌的未来。