GANZoo:千奇百怪的生成对抗网络,都在这里了73个
允中编译整理
量子位出品|公众号QbitAI
自从Goodfellow2014年提出这个想法之后,生成对抗网络(GAN)就成了深度学习领域内最火的一个概念,包括LeCun在内的许多学者都认为,GAN的出现将会大大推进AI向无监督学习发展的进程。
于是,研究GAN就成了学术圈里的一股风潮,几乎每周,都有关于GAN的全新论文发表。而学者们不仅热衷于研究GAN,还热衷于给自己研究的GAN起名,比如什么3D-GAN、BEGAN、iGAN、SGAN……千奇百怪、应有尽有。
今天,量子位决定带大家逛逛GANs的动物园(园长:AvinashHindupur),看看目前世界上到底存活着多少GAN。
GAN—GenerativeAdversarialNetworks
3D-GAN—LearningaProbabilisticLatentSpaceofObjectShapesvia3DGenerative-AdversarialModeling
AdaGAN—AdaGAN:BoostingGenerativeModels
AffGAN—AmortisedMAPInferenceforImageSuper-resolution
ALI—AdversariallyLearnedInference
AMGAN—GenerativeAdversarialNetswithLabeledDatabyActivationMaximization
AnoGAN—UnsupervisedAnomalyDetectionwithGenerativeAdversarialNetworkstoGuideMarkerDiscovery
ArtGAN—ArtGAN:ArtworkSynthesiswithConditionalCategorialGANs
b-GAN—b-GAN:UnifiedFrameworkofGenerativeAdversarialNetworks
BayesianGAN—DeepandHierarchicalImplicitModels
BEGAN—BEGAN:BoundaryEquilibriumGenerativeAdversarialNetworks
BiGAN—AdversarialFeatureLearning
BS-GAN—Boundary-SeekingGenerativeAdversarialNetworks
CGAN—TowardsDiverseandNaturalImageDescriptionsviaaConditionalGAN
CCGAN—Semi-SupervisedLearningwithContext-ConditionalGenerativeAdversarialNetworks
CatGAN—UnsupervisedandSemi-supervisedLearningwithCategoricalGenerativeAdversarialNetworks
CoGAN—CoupledGenerativeAdversarialNetworks
Context-RNN-GAN—ContextualRNN-GANsforAbstractReasoningDiagramGeneration
C-RNN-GAN—C-RNN-GAN:Continuousrecurrentneuralnetworkswithadversarialtraining
CVAE-GAN—CVAE-GAN:Fine-GrainedImageGenerationthroughAsymmetricTraining
CycleGAN—UnpairedImage-to-ImageTranslationusingCycle-ConsistentAdversarialNetworks
DTN—UnsupervisedCross-DomainImageGeneration
DCGAN—UnsupervisedRepresentationLearningwithDeepConvolutionalGenerativeAdversarialNetworks
DiscoGAN—LearningtoDiscoverCross-DomainRelationswithGenerativeAdversarialNetworks
DualGAN—DualGAN:UnsupervisedDualLearningforImage-to-ImageTranslation
EBGAN—Energy-basedGenerativeAdversarialNetwork
f-GAN—f-GAN:TrainingGenerativeNeuralSamplersusingVariationalDivergenceMinimization
GoGAN—GangofGANs:GenerativeAdversarialNetworkswithMaximumMarginRanking
GP-GAN—GP-GAN:TowardsRealisticHigh-ResolutionImageBlending
IAN—NeuralPhotoEditingwithIntrospectiveAdversarialNetworks
iGAN—GenerativeVisualManipulationontheNaturalImageManifold
IcGAN—InvertibleConditionalGANsforimageediting
ngUsingaConditionalGenerativeAdversarialNetwork
ImprovedGAN—ImprovedTechniquesforTrainingGANs
InfoGAN—InfoGAN:InterpretableRepresentationLearningbyInformationMaximizingGenerativeAdversarialNets
LR-GAN—LR-GAN:LayeredRecursiveGenerativeAdversarialNetworksforImageGeneration
LSGAN—LeastSquaresGenerativeAdversarialNetworks
LS-GAN—Loss-SensitiveGenerativeAdversarialNetworksonLipschitzDensities
MGAN—PrecomputedReal-TimeTextureSynthesiswithMarkovianGenerativeAdversarialNetworks
MAGAN—MAGAN:MarginAdaptationforGenerativeAdversarialNetworks
MalGAN—GeneratingAdversarialMalwareExamplesforBlack-BoxAttacksBasedonGAN
MARTA-GAN—DeepUnsupervisedRepresentationLearningforRemoteSensingImages
McGAN—McGan:MeanandCovarianceFeatureMatchingGAN
MedGAN—GeneratingMulti-labelDiscreteElectronicHealthRecordsusingGenerativeAdversarialNetworks
MIX+GAN—GeneralizationandEquilibriuminGenerativeAdversarialNets(GANs
MPM-GAN—MessagePassingMulti-AgentGANs
MV-BiGAN—Multi-viewGenerativeAdversarialNetworks
pix2pix—Image-to-ImageTranslationwithConditionalAdversarialNetworks
PPGN—Plug&PlayGenerativeNetworks:ConditionalIterativeGenerationofImagesinLatentSpace
PrGAN—3DShapeInductionfrom2DViewsofMultipleObjects
—TextureSynthesiswithSpatialGenerativeAdversarialNetworks
SAD-GAN—SAD-GAN:SyntheticAutonomousDrivingusingGenerativeAdversarialNetworks
SalGAN—SalGAN:VisualSaliencyPredictionwithGenerativeAdversarialNetworks
SEGAN—SEGAN:SpeechEnhancementGenerativeAdversarialNetwork
SeqGAN—SeqGAN:SequenceGenerativeAdversarialNetswithPolicyGradient
SketchGAN—AdversarialTrainingForSketchRetrieval
SL-GAN—Semi-LatentGAN:Learningtogenerateandmodifyfacialimagesfromattributes
SRGAN—Photo-RealisticSingleImageSuper-ResolutionUsingaGenerativeAdversarialNetwork
SGAN—GenerativeImageModelingusingStyleandStructureAdversarialNetworks
SSL-GAN
StackGAN—StackGAN:TexttoPhoto-realisticImageSynthesiswithStackedGenerativeAdversarialNetworks
TGAN—TemporalGenerativeAdversarialNets
TAC-GAN—TAC-GAN—TextConditionedAuxiliaryClassifierGenerativeAdversarialNetwork
TP-GAN—BeyondFaceRotation:GlobalandLocalPerceptionGANforPhotorealisticandIdentityPreservingFrontalViewSynthesis
Triple-GAN—TripleGenerativeAdversarialNets
VGAN—GenerativeAdversarialNetworksasVariationalTrainingofEnergyBasedModels
VAE-GAN—Autoencodingbeyondpixelsusingalearnedsimilaritymetric
ViGAN—ImageGenerationandEditingwithVariationalInfoGenerativeAdversarialNetworks
WGAN—WassersteinGAN
WGAN-GP—ImprovedTrainingofWassersteinGANs
WaterGAN—WaterGAN:UnsupervisedGenerativeNetworktoEnableReal-timeColorCorrectionofMonocularUnderwaterImages
招聘
- 免责声明
- 本文所包含的观点仅代表作者个人看法,不代表新火种的观点。在新火种上获取的所有信息均不应被视为投资建议。新火种对本文可能提及或链接的任何项目不表示认可。 交易和投资涉及高风险,读者在采取与本文内容相关的任何行动之前,请务必进行充分的尽职调查。最终的决策应该基于您自己的独立判断。新火种不对因依赖本文观点而产生的任何金钱损失负任何责任。