首页 > AI资讯 > 最新资讯 > GANZoo:千奇百怪的生成对抗网络,都在这里了73个

GANZoo:千奇百怪的生成对抗网络,都在这里了73个

新火种    2023-09-07

允中编译整理

量子位出品|公众号QbitAI

自从Goodfellow2014年提出这个想法之后,生成对抗网络(GAN)就成了深度学习领域内最火的一个概念,包括LeCun在内的许多学者都认为,GAN的出现将会大大推进AI向无监督学习发展的进程。

于是,研究GAN就成了学术圈里的一股风潮,几乎每周,都有关于GAN的全新论文发表。而学者们不仅热衷于研究GAN,还热衷于给自己研究的GAN起名,比如什么3D-GAN、BEGAN、iGAN、SGAN……千奇百怪、应有尽有。

今天,量子位决定带大家逛逛GANs的动物园(园长:AvinashHindupur),看看目前世界上到底存活着多少GAN。

GAN—GenerativeAdversarialNetworks

3D-GAN—LearningaProbabilisticLatentSpaceofObjectShapesvia3DGenerative-AdversarialModeling

AdaGAN—AdaGAN:BoostingGenerativeModels

AffGAN—AmortisedMAPInferenceforImageSuper-resolution

ALI—AdversariallyLearnedInference

AMGAN—GenerativeAdversarialNetswithLabeledDatabyActivationMaximization

AnoGAN—UnsupervisedAnomalyDetectionwithGenerativeAdversarialNetworkstoGuideMarkerDiscovery

ArtGAN—ArtGAN:ArtworkSynthesiswithConditionalCategorialGANs

b-GAN—b-GAN:UnifiedFrameworkofGenerativeAdversarialNetworks

BayesianGAN—DeepandHierarchicalImplicitModels

BEGAN—BEGAN:BoundaryEquilibriumGenerativeAdversarialNetworks

BiGAN—AdversarialFeatureLearning

BS-GAN—Boundary-SeekingGenerativeAdversarialNetworks

CGAN—TowardsDiverseandNaturalImageDescriptionsviaaConditionalGAN

CCGAN—Semi-SupervisedLearningwithContext-ConditionalGenerativeAdversarialNetworks

CatGAN—UnsupervisedandSemi-supervisedLearningwithCategoricalGenerativeAdversarialNetworks

CoGAN—CoupledGenerativeAdversarialNetworks

Context-RNN-GAN—ContextualRNN-GANsforAbstractReasoningDiagramGeneration

C-RNN-GAN—C-RNN-GAN:Continuousrecurrentneuralnetworkswithadversarialtraining

CVAE-GAN—CVAE-GAN:Fine-GrainedImageGenerationthroughAsymmetricTraining

CycleGAN—UnpairedImage-to-ImageTranslationusingCycle-ConsistentAdversarialNetworks

DTN—UnsupervisedCross-DomainImageGeneration

DCGAN—UnsupervisedRepresentationLearningwithDeepConvolutionalGenerativeAdversarialNetworks

DiscoGAN—LearningtoDiscoverCross-DomainRelationswithGenerativeAdversarialNetworks

DualGAN—DualGAN:UnsupervisedDualLearningforImage-to-ImageTranslation

EBGAN—Energy-basedGenerativeAdversarialNetwork

f-GAN—f-GAN:TrainingGenerativeNeuralSamplersusingVariationalDivergenceMinimization

GoGAN—GangofGANs:GenerativeAdversarialNetworkswithMaximumMarginRanking

GP-GAN—GP-GAN:TowardsRealisticHigh-ResolutionImageBlending

IAN—NeuralPhotoEditingwithIntrospectiveAdversarialNetworks

iGAN—GenerativeVisualManipulationontheNaturalImageManifold

IcGAN—InvertibleConditionalGANsforimageediting

ngUsingaConditionalGenerativeAdversarialNetwork

ImprovedGAN—ImprovedTechniquesforTrainingGANs

InfoGAN—InfoGAN:InterpretableRepresentationLearningbyInformationMaximizingGenerativeAdversarialNets

LR-GAN—LR-GAN:LayeredRecursiveGenerativeAdversarialNetworksforImageGeneration

LSGAN—LeastSquaresGenerativeAdversarialNetworks

LS-GAN—Loss-SensitiveGenerativeAdversarialNetworksonLipschitzDensities

MGAN—PrecomputedReal-TimeTextureSynthesiswithMarkovianGenerativeAdversarialNetworks

MAGAN—MAGAN:MarginAdaptationforGenerativeAdversarialNetworks

MalGAN—GeneratingAdversarialMalwareExamplesforBlack-BoxAttacksBasedonGAN

MARTA-GAN—DeepUnsupervisedRepresentationLearningforRemoteSensingImages

McGAN—McGan:MeanandCovarianceFeatureMatchingGAN

MedGAN—GeneratingMulti-labelDiscreteElectronicHealthRecordsusingGenerativeAdversarialNetworks

MIX+GAN—GeneralizationandEquilibriuminGenerativeAdversarialNets(GANs

MPM-GAN—MessagePassingMulti-AgentGANs

MV-BiGAN—Multi-viewGenerativeAdversarialNetworks

pix2pix—Image-to-ImageTranslationwithConditionalAdversarialNetworks

PPGN—Plug&PlayGenerativeNetworks:ConditionalIterativeGenerationofImagesinLatentSpace

PrGAN—3DShapeInductionfrom2DViewsofMultipleObjects

—TextureSynthesiswithSpatialGenerativeAdversarialNetworks

SAD-GAN—SAD-GAN:SyntheticAutonomousDrivingusingGenerativeAdversarialNetworks

SalGAN—SalGAN:VisualSaliencyPredictionwithGenerativeAdversarialNetworks

SEGAN—SEGAN:SpeechEnhancementGenerativeAdversarialNetwork

SeqGAN—SeqGAN:SequenceGenerativeAdversarialNetswithPolicyGradient

SketchGAN—AdversarialTrainingForSketchRetrieval

SL-GAN—Semi-LatentGAN:Learningtogenerateandmodifyfacialimagesfromattributes

SRGAN—Photo-RealisticSingleImageSuper-ResolutionUsingaGenerativeAdversarialNetwork

SGAN—GenerativeImageModelingusingStyleandStructureAdversarialNetworks

SSL-GAN

StackGAN—StackGAN:TexttoPhoto-realisticImageSynthesiswithStackedGenerativeAdversarialNetworks

TGAN—TemporalGenerativeAdversarialNets

TAC-GAN—TAC-GAN—TextConditionedAuxiliaryClassifierGenerativeAdversarialNetwork

TP-GAN—BeyondFaceRotation:GlobalandLocalPerceptionGANforPhotorealisticandIdentityPreservingFrontalViewSynthesis

Triple-GAN—TripleGenerativeAdversarialNets

VGAN—GenerativeAdversarialNetworksasVariationalTrainingofEnergyBasedModels

VAE-GAN—Autoencodingbeyondpixelsusingalearnedsimilaritymetric

ViGAN—ImageGenerationandEditingwithVariationalInfoGenerativeAdversarialNetworks

WGAN—WassersteinGAN

WGAN-GP—ImprovedTrainingofWassersteinGANs

WaterGAN—WaterGAN:UnsupervisedGenerativeNetworktoEnableReal-timeColorCorrectionofMonocularUnderwaterImages

招聘

相关推荐
免责声明
本文所包含的观点仅代表作者个人看法,不代表新火种的观点。在新火种上获取的所有信息均不应被视为投资建议。新火种对本文可能提及或链接的任何项目不表示认可。 交易和投资涉及高风险,读者在采取与本文内容相关的任何行动之前,请务必进行充分的尽职调查。最终的决策应该基于您自己的独立判断。新火种不对因依赖本文观点而产生的任何金钱损失负任何责任。