叶军院士团队登Nature封面:新型核钟可为原子核基本力提供新见解
中国科学院外籍院士、物理学家叶军团队,原子钟项目再次登Nature封面!
这次从投稿到接收仅用了27天。
具体来说,团队开发了一种基于原子核中能量微小变化的时钟,能做到比目前世界上最好的计时器(光钟)更精确,并且对干扰的敏感度更低。
被Nature评价为“可能改变基础物理学研究”,可以提供对原子核中基本力的新见解。
核基固态光学钟的开端比原子钟还精确!
现在的很多超精确时钟都是用原子的电子能级来计时的,比如锶-87原子钟。
原子钟的测量精度非常高,每过150亿年才会有一秒的误差。
而基于核能级的核钟被认为是原子钟的pro版本,叶军团队的最新研究正是围绕这个主题展开。
实验中,叶军团队成功利用真空紫外(VUV)频率梳直接激发铀-229核时钟跃迁,并与铷-87原子钟建立了直接的频率连接。
这是首次通过激光直接激发铀-229核跃迁,是核时钟与原子钟之间的首次直接频率比测量。
他们还精确测量了铀-229核跃迁的绝对频率,达到了千赫兹级别的精度,并成功提取了核四极分裂的内在特性。这些数据对于暗物质的探索和研究开辟了新的方向。
除此之外 ,叶军团队的这项研究也标志着核基固态光学钟的开端,给这种新型始终以后用在实际情况中打下了基础。
△绝对频率测定直接激发和频率比测量为了实现研究目标,叶军带领进行了多个实验步骤:
首先,他们使用掺铒光纤激光器生成红外频率梳,并通过一系列放大过程将输出功率提升到40-50瓦特。
△核钟跃迁的VUV梳状光谱接着,团队将红外频率梳聚焦到氙气喷雾中,生成波长约为148.3纳米的真空紫外(VUV)频率梳。
△全范围梳状扫描然后,研究人员将VUV频率梳的基频与铷-87原子钟的频率进行稳定连接,以确保频率的准确性,并通过直接激发铀-229的核跃迁,建立核时钟与原子钟之间的频率比测量。
△线路形状和中心频率确定在样品制备方面,团队使用掺铀-229的氟化钙单晶作为激发目标,掺杂浓度为5×10^18 cm^-3。
通过VUV频率梳的单一频率线,他们成功激发了铀-229的核时钟跃迁,激发后样品内的铀-229核释放出荧光光子。
最后,研究人员使用反射抛物镜收集从铀-229衰变中发出的荧光光子,并通过光电倍增管计数这些光子,记录信号以分析核跃迁的特性和频率,成功实现了铀-229核时钟与铷-87原子钟之间的直接频率比测量。
△核电四极结构的直接光谱测量一个想理解宇宙的钟表匠叶军现任美国科罗拉多大学博尔德分校的教授,同时也是美国国家标准与技术研究院(NIST)和科罗拉多大学联合建立的天体物理联合实验室(JILA)的研究员。
在原子钟和量子多体物理学领域颇有盛名。
本科毕业于上海交通大学应用物理系,博士毕业于科罗拉多大学,导师是诺贝尔物理学奖得主约翰·霍尔。
自1999年,叶军就致力于光学原子钟的研发,他的团队开发的光学原子钟被认为是世界上最精确的时钟之一,其测量精度达到了每150亿年误差不到一秒的水平。
2007年,叶军及研究团队做出了世界上首台“每7000万年仅误差1秒”的锶原子光钟。
此后多年,他的团队不断推进原子钟的性能提升。
2017年,他们设计了一种新型原子钟,将锶原子装入微小的三维光晶格中。这种三维结构使得原子密度较之前的一维光晶格设计提高了近1000倍。
而如今,他的团队在这个领域又有新的突破,成功开发出一种新型核钟。
未来,我们也有理由期待这位“想理解宇宙的钟表匠”,会给人们带来更多的惊喜和突破。
- 免责声明
- 本文所包含的观点仅代表作者个人看法,不代表新火种的观点。在新火种上获取的所有信息均不应被视为投资建议。新火种对本文可能提及或链接的任何项目不表示认可。 交易和投资涉及高风险,读者在采取与本文内容相关的任何行动之前,请务必进行充分的尽职调查。最终的决策应该基于您自己的独立判断。新火种不对因依赖本文观点而产生的任何金钱损失负任何责任。