大模型「上车」关键一步:全球首个语言+自动驾驶全栈开源数据集来了
声明:本文来自于
说到科技圈的近期新闻,没有比小马和小扎约架这件事更热闹的八卦话题了。
前几天,马斯克直播了自己上门寻找扎克伯格的过程。虽然最终无功而返,但小马显然 “醉翁之意不在酒”,而是想借机展示特斯拉最新的 FSD V12自动驾驶功能。
可就在小马得意洋洋的向观众介绍时,自动驾驶系统却出了状况,在一个路口时作出了错误的判断,逼得小马手动干预了驾驶。小马尴尬地表示要 “给网络喂更多的相关数据”。
可见强如特斯拉的 FSD v12,也存在处理复杂场景时决策推理能力不足的问题。这让人不禁想问,有没有什么办法能解决这一难题?
上海人工智能实验室 OpenDriveLab 认为,要解决这一难题,引入时下大热的大模型可能是一个解决方案。
DriveLM | 动机
大模型已经在自然语言处理问题上证明了自己的威力。然而要想让它大显神威,海量数据必不可少。在自动驾驶领域,通过量产车大规模采集数据来支持自动驾驶系统的想法尚停留在建设阶段,各家车厂间的竞争也使得数据集的开源共享变得不切实际。
但如果换一个角度思考,大语言模型中的推理范式和常识在现实世界是通用的。如果能利用起现有的成熟大语言模型和海量语料数据库,再加上CoT(Chain of Thought)、GoT (Graph of Thougtht)等推理 Prompt 技术,站上巨人的肩膀,就可以让自动驾驶系统应对复杂状况的能力更上一层楼。
据此,上海人工智能实验室 OpenDriveLab、德国图宾根大学 Autonomous Vision Group、德国图宾根 AI Center 联合推出了世界首个语言 + 自动驾驶全栈开源数据集——DriveLM,旨在借助大语言模型和海量自然语言数据集,构筑复杂场景下安全、精准、可解释的自动驾驶系统,突破现有自动驾驶推理能力上限。
同时,DriveLM 也是 OpenDriveLab 提出的 DriveAGI 的重要组成部分。OpenDriveLab 之后将围绕 DriveLM 举办一系列语言 + 自动驾驶竞赛,以推动自然语言处理领域和自动驾驶领域的交流与技术交叉进步。
OpenDriveLab 提出的 DriveAGI 总体框架
不过今天,机器之心先带大家一起来看看这个融合语言信息的自动驾驶数据集是如何在大语言模型和自动驾驶系统之间搭建起桥梁,让大语言模型帮助自动驾驶系统获得更强大的、可解释的推理能力的。
Repository:https://github.com/OpenDriveLab/DriveLM
Page:https://opendrivelab.github.io/DriveLM
Hugging Face:https://huggingface.co/datasets/OpenDrive/DriveLM
DriveLM | 特点
结构化推理与思维图评测
驾驶目标分解
DriveLM 标注中不同类别问题的分布情况
DriveLM 是一个基于 nuScenes 自动驾驶数据集构建的、以关键帧描述 + 问答对(Description+Q&A)为核心的数据集。
数据集中的问答对主要可以分为三类:感知(Perception)、预测(Prediction)和规划(Planning)。感知部分着重于询问物体相对自车的位置或运动状态;预测部分询问车辆或行人的未来可能行为和状态;规划部分询问自车可以采取的行动。
整个数据集分为训练集和验证集两部分,训练集共包含697个场景,验证集包含150个场景。每个场景包含大约40帧(采样频率约为2赫兹),标注员会在其中选择4-8个关键帧进行标注。
想要了解数据集的更多细节,请参考 OpenDriveLab 发布在 Github 上的 DriveLM 演示数据。
- 免责声明
- 本文所包含的观点仅代表作者个人看法,不代表新火种的观点。在新火种上获取的所有信息均不应被视为投资建议。新火种对本文可能提及或链接的任何项目不表示认可。 交易和投资涉及高风险,读者在采取与本文内容相关的任何行动之前,请务必进行充分的尽职调查。最终的决策应该基于您自己的独立判断。新火种不对因依赖本文观点而产生的任何金钱损失负任何责任。