深度学习蓄势待发,即将“爆破”欧拉方程
作者| Jordana Cepelewicz
编译|钱磊、Ailleurs
编辑|陈彩娴250多年来,数学家们一直试图“爆破”一些物理学中最重要的方程式,比如描述流体流动的欧拉方程。如果他们成功,他们会发现,在某种情况下方程会被爆破——比如可能会出现一个无限快地旋转的漩涡,或者出现一个突然停止又突然流动的电流,或者是出现一个以无限快的速度掠过的电子。超过这个爆发点——也就是“奇点”——方程将不再有解。这些方程甚至将无法描述这个世界的理想情况,数学家们有理由怀疑这些流体行为的模型到底是否可靠。奇点正如其所要描述的流体一样滑溜而不可捉摸。为了找到答案,数学家们通常会把控制流体流动的方程式输入计算机,然后进行数字模拟。他们从一组初始条件开始,然后观察,直到某个量的值——比如速度,或者涡度——开始疯狂地增长,似乎在朝着爆炸的方向发展。但是计算机无法确定地发现奇点,原因很简单,因为计算机无法处理无限值。如果奇点存在,计算机模型可能会接近方程被爆破的那个点,但永远无法直接得到奇点。事实上,当用更强大的计算方法探测时,明显的奇点却已经消失了。但这种对奇点的近似仍然很重要。有了近似,数学家们就可以使用一种叫做计算机辅助证明的技术来证明附近确实存在一个奇点。此前已经有过简化的一维版本的研究。今年早些时候,一个由数学家和地球科学家组成的团队发现了一种全新的近似奇点的方法——他们利用了深度学习方法,能够直接观察奇点。这个团队还用这种方法来寻找传统方法无法找到的奇点,希望能证明这些方程并不像看起来那样绝对可靠。
消失的爆破解莱昂哈德·欧拉(Leonhard Euler)在1757年提出了欧拉方程,该方程描述了理想的、不可压缩的流体的运动——这种流体没有粘性,也没有内摩擦,而且不能压缩到更小的体积。(自然界中发现的许多流体一样是具有粘性的,它们的模型是纳维尔-斯托克斯方程;爆破纳维尔-斯托克斯方程将获得克雷数学研究所 100万美元的千禧年奖。) 给定流体中每个粒子在某一起始点的速度,欧拉方程应该能够预测流体在任何时候的流动状况。但是数学家们想知道,在某些情况下——即使一开始看起来没什么问题——这些方程最终是否会遇到麻烦。(我们有理由怀疑这可能是事实:他们模拟的理想流体与真正的只有最轻微粘性的流体没有任何相似之处。欧拉方程中奇点的形成可以解释这种散度。)2013年,两位数学家提出了这样一个设想。由于一个完整的三维流体流动的动力学可以变得难以置信的复杂,加州理工学院的数学家Thomas Hou和香港恒生大学的Guo Luo认为流动服从某种对称性。在他们的模拟中,流体在一个圆柱形杯内旋转。杯子上半部分的液体顺时针旋转,而下半部分的液体逆时针旋转。相反的水流形成了其他复杂的上下循环的水流。很快,在边界上两股相反的水流相遇处,流体的涡度爆发了。
PINN:始于冰川研究关于欧拉方程爆破的新研究始于这样一个令人意想不到的领域——地球物理学家对南极洲冰盖的动力学研究。他们的研究要求使用一种深度学习方法,这种方法后来在更多的理论背景中都被证明是有用的。数学家Tristan Buckmaster目前是普林斯顿高等研究院的访问学者,他发现这种新方法纯属一次偶然。去年,他所在系的本科生Charlie Cowen Breen请他签署一个项目,该学生在普林斯顿地球物理学家Ching-Yao Lai的指导下一直在对南极冰盖做动力学研究。他们试图通过卫星图像和其他观测来推测冰的粘度,并预测其未来的流动。通过运用一种以前从未见过的深度学习方法——“基于物理信息的神经网络”(PINN),他们实现了这一点。传统的神经网络需要对大量数据进行训练才能进行预测,PINN则与此不同,它还必须满足一组潜在的物理约束条件,包括运动定律、能量守恒、热力学等等,以及科学家为了解决特定问题而需要引入的其他任何物理约束。
爆破解的寻求之路回顾当初,Buckmaster说,开发PINN“似乎是显而易见要做的”。Buckmaster、Lai、Wang 以及Javier Gómez-Serrano(他是布朗大学和巴塞罗那大学的数学家)四人合作,建立了一套物理约束来帮助指导PINN,这套物理约束包括与对称性和其他性质有关的条件,以及他们想要求解的方程。他们使用了一组使用自相似坐标来重写的二维方程,这些方程在接近圆柱边界的点上等价于三维欧拉方程。然后,他们训练神经网络来寻找满足这些约束条件的解——以及自相似参数。“这种方法非常灵活,只要施加正确的约束,你总能找到一个解。”Lai说道。事实上,团队还通过在其他问题上测试该方法展示了这种灵活性。该团队提供的答案看起来很像Hou 和 Luo (2013)提出的解决方案。但是数学家们希望他们给出的近似能更详细地描述正在发生的事情,因为这是第一次直接计算出这个问题的自相似解。Sverak 表示 :“新的研究结果更精确地说明了奇点是如何形成的”,即某些值会如何达到爆破点,以及方程将如何崩溃。Buckmaster指出:“在没有神经网络的情况下,你很难证明你是真的在捕捉奇点的本质。很明显,这项研究所用的方法是比传统方法要容易得多。”Gómez-Serrano对此表示同意,他说:“这在未来将成为人们手边的一种标准工具”。PINNs再一次揭示了Karniadakis所说的“隐藏流体力学”,只是这一次,他们用PINNs在更具理论性的问题上取得了进展。Karniadakis说:“我还没见过有人用PINNs来做这件事。”这并不是数学家感到兴奋的唯一原因。PINNs可能也可以用来找到另一种奇点,这种奇点用传统的数值方法是几乎发现不了的。这些“不稳定”奇点可能是某些流体动力学模型中唯一存在的奇点,包括没有圆柱边界的欧拉方程(这一的方程求解起来已经复杂很多)和纳维-斯托克斯方程(Navier-Stokes equations)。“不稳定的奇点确实存在。所以为什么不找到它们呢?”普林斯顿的数学家Peter Constantin曾这样说道。但即使对于用经典方法可以处理的稳定奇点,PINN为有圆柱边界的欧拉方程提供的解决方案“是定量且精确的,并且还可以变得更为严密。现在有了一个通往证明的路线图。这将需要做很多工作,需要很多的技能。我想这还需要一些创意。但我不认为这需要什么天赋。我认为这是可行的。”Fefferman这样表示。Buckmaster的团队现在正在与Hou和Chen展开一项竞赛,看谁能抢先到达终点线。Hou和Chen在 这条赛道上是领先一步的:据Hou说,他们在过去几年里在改进近似解和完成证明方面取得了实质性进展,他怀疑Buckmaster和他的同事必须改进近似解,才能得到他们自己的证明。而他认为,现有近似解的误差余地已经很小了。尽管如此,许多专家希望,250年来人们对欧拉方程爆破解的探索将接近尾声。Sverak 说:“从概念上讲,我认为……所有重要的部分都已到位,只是细节还很难确定。”
参考链接:
https://www.quantamagazine.org/deep-learning-poised-to-blow-up-famed-fluid-equations-20220412/
https://arxiv.org/pdf/2201.06780v2.pdf

相关推荐
- 免责声明
- 本文所包含的观点仅代表作者个人看法,不代表新火种的观点。在新火种上获取的所有信息均不应被视为投资建议。新火种对本文可能提及或链接的任何项目不表示认可。 交易和投资涉及高风险,读者在采取与本文内容相关的任何行动之前,请务必进行充分的尽职调查。最终的决策应该基于您自己的独立判断。新火种不对因依赖本文观点而产生的任何金钱损失负任何责任。
热门文章
