首页 > 蛋白质

蛋白质

  • 诺奖风向标指向AI!谷歌蛋白质结构预测模型获颁医学领域顶级奖项

    财联社9月22日讯(编辑 史正丞)美国当地时间周四,医学领域顶级奖项——拉斯克奖(The Lasker Awards)宣布,谷歌DeepMind的研究人员、光学相干断层成像技术的发明者,以及在癌症研究领域奋战50余年的荷兰科学家荣获今年的奖项。(来源:拉斯克奖)拉斯克奖也是知名的“诺贝尔奖风向标”。

  • 腾讯AILab3篇蛋白质组论文入选国际顶级期刊

    3月20日,腾讯 AI Lab实验室3篇蛋白质组论文正式入选国际顶级学术期刊,论文分别在数据库、AI建模、AI辅助临床三个角度提出了全新的研究方案,为人类高效精准分析蛋白质组数据、理解肿瘤微环境、发现生物学新机制打下坚实基础,并从根本上阐释生命提供重要技术参考。

  • 想改造蛋白质?交给人工智能吧

    作者:董雪 吴振东“要么换行业,要么拥抱人工智能。”这是互联网企业员工的感慨吗?不,这是一位科学家的启悟。2020年蛋白质结构预测模型AlphaFold2横空出世,上海交通大学物理与天文学院、自然科学研究院教授洪亮大受震撼。彼时他是计算化学领域的专家,志在借助各类装置“看清”蛋白质的结构,并用传统计

  • 多伦多大学团队使用AlphaFold获得对蛋白质结构的新见解

    AlphaFold 蛋白质结构数据库包含数百万种蛋白质的预测结构。对于大多数含有本质无序区域 (IDR) 的人类蛋白质,这些区域不采用稳定的结构,通常认为这些区域具有较低的 AlphaFold2 置信度分数,反映了低置信度的结构预测。

  • AI面临的五个蛋白质设计问题,Nature找了一群专家来讨论

    编辑 | 白菜叶Alena Khmelinskaia 希望设计定制蛋白质就像订餐一样简单。她说,想象一下一台「自动售货机」,任何研究人员都可以使用它来指定他们想要的蛋白质的功能、大小、位置、分子伴侣或者其他特征。「理想情况下,你会得到一个可以同时完成所有这些事情的完美设计。」德国慕尼黑大学(LMU)

  • 复旦团队开发新型AI算法“看清”蛋白质精细结构,可与AlphaFold预测互补

    北京时间10月9日晚,国际知名学术期刊《自然-方法》(影响因子47.99)刊发了由复旦大学马剑鹏教授领衔的科研团队开发的新型计算方法OPUS-DSD。该算法不但能够成功地解析冷冻电子显微镜(Cryo-EM)结构解析技术中因传统方法无法分辨而缺损的生物大分子(比如蛋白质、核酸或蛋白质/核酸复合物等)结

  • 准确预测蛋白质功能新SOTA,中南大学推出全新深度学习模型,登Nature子刊

    编辑丨&预测蛋白质功能的计算方法对于理解生物学机制和治疗复杂疾病具有重要意义。然而,现有的预测计算方法缺乏可解释性,难以理解蛋白质结构和功能之间的关系。在研究中,来自中南大学的团队提出了一种基于深度学习的解决方案,名为 DPFunc,用于使用域引导的结构信息进行准确的蛋白质功能预测。

  • AI蛋白质夺诺奖,清华聂再清:大模型解码生物语言|智者访谈

    人工智能的卓越发展源于对技术与产业本质的洞察机器之心视频栏目「智者访谈」邀请领域专家,洞悉 AI 核心趋势深化行业认知,激发创新思考与智者同行,共创 AI 未来2024 年诺贝尔化学奖颁发给了在计算蛋白质设计和蛋白质结构预测领域做出突出贡献的三位科学家,凸显了人工智能和计算方法在解析生物语言中的关键