复旦大学管理学院张成洪:如何“治理”AI算法,为人类自身“解困”?
8月31日讯(编辑 李梦琪 郭楠)据了解,国内将有11家大模型陆续通过《生成式人工智能服务管理暂行办法》备案,首批将在8月31日起陆续向全社会公众开放服务。
为人工智能技术发展带上枷锁、规范发展是让技术更好为人类服务的必然选择。随着《生成式人工智能服务管理暂行办法》出台及相关企业获批备案,人工智能技术的创新应用将会逐渐落地。
在复旦大学管理学院信息管理与商业智能系教授张成洪看来,AI算法发展带来的“远虑近忧”都值得思考,我们迫切需要对AI算法进行有效的治理。连线分享张成洪对AI算法的观点,解读AI算法引发的涟漪效应以及应对之法。
本文内容整理自“问学·复旦管院”一
AI的“远虑近忧”
今年上半年,包括马斯克在内的千名全球科技人士联名发布了一份公开信,呼吁暂停推出更强大的人工智能系统。
尽管我认为这份公开信的呼吁不太可行,但其中提出的许多观点值得深思。其中,特别强调了需要建立专门负责人工智能的、有能力的监管机构;强调了推出标明来源系统和水印系统的重要性,以帮助区分真实信息和合成信息,并跟踪模型的泄露;此外,还提出需要强大的审计和认证体系,以确保人工智能系统的透明度和可信度。另外,公开信还提出了需要明确人工智能可能造成的伤害所对应的责任归属。
这些内容表明,科技领域的关注不仅仅局限于人工智能的应用,更多地开始关注人工智能是否会带来负面影响,是否需要对其发展进行适当的限制。
即使不去考虑AI的“远虑”,也需关注AI的“近忧”。
比如,电商平台依赖算法进行推荐和定价,可能导致价格歧视和大数据杀熟现象;视频网站通过算法推荐内容,可能造成信息茧房,使消费者只接触符合其观点的内容,加剧信息偏见;对于外卖骑手,AI算法的应用可能影响他们的工作和收入,使他们感觉被“困”在算法规则中。
二
AI算法治理的基本原则
AI算法治理指基于风险防范的要求,对算法本身以及其应用的场景和解决的问题,作为治理对象进行规范化、合规化的监管和修正。
当涉及到算法的标准和要求时,出现了一些新的术语,例如公平的AI、可解释的AI、负责任的AI和可信的AI等等。然而,综合考虑这些概念,我们可以总结出一些关于制定、设计和运行AI算法的基本原则。
1)准确性。AI算法的首要任务是准确,如果不准确本身就没用,还会带来负面效果。
2)稳定性。它要求我们的算法不仅在当前情境下准确可靠,还需在不同情境下保持准确可靠。
3)可靠性。保证算法决策依据的充分性,保证决策结果可靠,可信任。
4)公平性。保证算法的决策无偏向性,无指向性。
5)透明性(可理解性)。保证算法的决策过程是透明的,决策结果是让大众可以理解的。
6)安全性。算法的开发和使用必须免受安全隐患的影响,不能因为外部干扰或攻击而导致算法误判。
7)隐私保护。算法一定会使用数据,所以要保证数据的安全,保护用户隐私。
以上七点是制定AI算法的基本要求。
AI算法治理的主要挑战是虽然目前有社会共识,有政策法规的要求,但还没有形成AI算法治理的体系。难点在哪里?因为AI算法经常是一个“黑匣子”,难以检测AI算法是否符合透明可解释、公平多样、安全合规等要求。
此外,因为算法是由数据驱动的,设计人员怎么保证算法是合规合法的、符合科技伦理的?应该由谁负责AI算法的治理?谁又有能力来做AI算法治理?
在我看来,AI算法治理至少要包含三个层次:
第一个层次,是算法治理的政策法规,由国家行业的主管部门制定政策,给予指导。
第二个层次,是算法合规性的审计,依据法律法规或者行业要求对企业展开检查和监管,这个可能企业内部做,也可能需要行业或国家成立专门的机构监管机构去做。
第三个层次,是开发出合规合法的AI算法,这对开发人员、对算法工程师是有要求的。
三
AI算法审计的现状与未来
算法合规性审计之所以重要,源于诸多因素。以2021年美团为例,为应对社会上对于骑手困在算法中的关注。在国家出台相应要求以保护骑手权益之际,美团采取了措施,公开了其骑手调度管理算法。然而,此举并未如预期般奏效,因公开程度较为粗略,难以被广泛理解。
在此引发一个问题:公开的程度应如何界定?若完全公开,是否会损害公司有关算法的知识产权?所以公开程度与算法的知识产权保护怎么去界定?这是一种矛盾,即不太可能要求企业完全向社会公开其AI算法。
相比之下,更好的方式是将其向专业人士或审计机构公开,或者设立专门的审计机构,以审计为手段检查企业或其AI程序是否遵守政策法规,确保其算法达到合规向善的企业承诺。
目前,对于AI算法进行审计确实极具挑战性。过去,企业对业务进行审计时可能发现,大部分业务实际上是由信息技术(IT)主导的,或者说业务的运转离不开IT系统。因此,对于IT系统的审计变得不可或缺,这可能需要对IT系统的逻辑进行严格审查。
而当我们现在面临算法审计时,即便我们有条件打开算法的代码,很可能仍然无法判断其合规性。正如之前所述,许多算法是数据驱动的,连算法工程师自己也可能无法预测所训练出的模型是否会违反某些伦理规范。尤其对于许多深度学习的AI算法来说,它们常常被视为黑匣子,难以深入探究其内部机理。
算法治理努力仍然需要继续前行,这需要在几个方面展开工作。首先,制度建设方面是关键,其中一个方向是确立相应的监管体系。监管部门需要将算法视为监管的对象,并对其全过程进行监管。有时候,由企业内部自行进行算法治理,而在某些情况下需要引入第三方的算法治理机构。
此外,我们还可以借鉴传统审计流程的经验。例如,对于算法合规性审计,我们可以采用类似的方法。首先,制定一套标准,然后进行调研,收集必要的信息,并进行测试和反馈。最终,总结审计结果。这样的流程我们过去用于内部审计的经验,现在可以用于算法合规性审计。
目前,AI算法审计仍处于初步探索阶段。尚未形成专门的AI算法审计机构,传统的会计事务所也很少开展AI算法审计业务。确实,让传统的会计人员做AI算法审计也相当困难。然而,我认为AI算法审计是未来的必然趋势,特别是在AI监管要求不断加强、AI负面事件增多的背景下,AI算法审计是必然的趋势。
我觉得,类似于过去我们建立了软件评测中心和安全评测中心一样,各地区可能会逐渐建立专业的机构来进行AI算法审计和认证工作。
虽然AI算法审计的道路充满挑战,还需要大量的研究和探索,但同时也蕴含着巨大的机遇和潜力。随着技术的不断发展和专业机构的建立,我相信AI算法审计会逐渐成为一项重要的工作,为确保AI系统的透明性、公平性和合规性发挥着关键作用。
综合而言,人工智能对人类的影响深远,然而它又可以说是一把“双刃剑”。因此,我们既需善用人工智能,也要严密监管,特别是在AI算法治理方面。尽管我国已在政策层面积极出台许多相关政策,但就算法治理的合规性审计和合规算法开发而言,仍处于探索初期。
要推进AI算法治理,需要高校和企业共同研究推进,行业和政府制度也应密切参与,同时,AI开发人员也需自觉承担责任。我深信,通过对AI算法的有效治理,我们将确保科技未来的善用,真正实现人工智能的负责任发展。
- 免责声明
- 本文所包含的观点仅代表作者个人看法,不代表新火种的观点。在新火种上获取的所有信息均不应被视为投资建议。新火种对本文可能提及或链接的任何项目不表示认可。 交易和投资涉及高风险,读者在采取与本文内容相关的任何行动之前,请务必进行充分的尽职调查。最终的决策应该基于您自己的独立判断。新火种不对因依赖本文观点而产生的任何金钱损失负任何责任。