首页 > AI资讯 > 最新资讯 > 中国科学院自动化所研发出新型类脑学习方法 有望引导新型类脑芯片设计

中国科学院自动化所研发出新型类脑学习方法 有望引导新型类脑芯片设计

新火种    2023-11-20

编辑 |绿萝

灾难性遗忘是反向传播学习算法固有的问题,是人工神经网络(ANN)和尖峰神经网络(SNN)研究中的一个难题。

大脑利用多尺度可塑性在某种程度上解决了这个问题。在特定通路的全局调控下,神经调节剂被分散到目标脑区,突触和神经元的可塑性都受到神经调节剂的局部调节。具体来说,神经调节剂改变神经元和突触可塑性的能力和性质。这种修饰被称为突触再可塑性(metaplasticity)。

近日,中国科学院自动化研究所徐波教授及其合作者研发出一种基于神经调制依赖可塑性的新型类脑学习方法(Neuromodulation-assisted Credit Assignment,NACA),可有效解决目前人工神经网络中普遍存在的「灾难性遗忘」问题,有望进一步引导新型类脑芯片的设计。

该研究以「A brain-inspired algorithm that mitigates catastrophic forgetting of artificial and spiking neural networks with low computational cost」为题,于 8 月 25 日发表在《Science Advances》上。

图片

该方法基于大脑复杂神经调节通路的结构,以期望矩阵编码的形式建立神经调节通路的数学模型。接收到刺激信号后,产生不同强度的多巴胺监督信号,进一步影响局部突触和神经元的可塑性。

图片

NACA 计算模型。(来源:论文)

NACA 支持使用纯前馈流学习方法来训练 ANN 和 SNN。通过全局多巴胺扩散支持,与输入信号同步,甚至在输入信号前向传播信息。与选择性调整峰值时间相关的可塑性相结合,NACA 在快速收敛和减轻灾难性遗忘方面表现出显著的优势。

图片

NACA 算法在两个识别任务中提高了 SNN 和 ANN 的性能。(来源:论文)

在两个典型的图像和语音模式识别任务中,研究小组评估了 NACA 算法的准确率和计算成本。在使用图像分类(MNIST)和语音识别(TIDigits)标准数据集的测试中,NACA 获得了更高的分类准确率(约 1.92%)和更低的学习能耗(约 98%)。

此外,研究小组重点测试了 NACA 在类连续学习上的连续学习能力,并将神经调节扩展到神经元可塑性的范围。

在连续 MNIST 手写体数字、连续字母表手写体字母、连续 MathGreek 手写体数学符号、连续 cifare -10 自然图像和连续 DvsGesture 动态手势等 5 个不同类别的连续学习任务中,NACA 比反向传播和弹性权巩固算法能耗更低,能够显著缓解灾难性遗忘问题。

图片

使用 NACA 和其他先进算法的 SNN 和 ANN 的持续学习性能。(来源:论文)

徐教授说:「NACA 是一种生物学上合理的全局优化算法,它利用宏观可塑性进一步 [调节] 局部可塑性,可以看作是一种『可塑性的可塑性』方法,与『学会学习』和『元学习』具有直观的功能一致性。」

文章第一作者、中国科学院自动化研究所副研究员张铁林介绍,人工神经网络由于采用反向传播(BP)等人工学习方法,可能会导致人工智能系统在学习新任务或适应新环境时,丧失了以前习得的一些能力,这种现象被称为「灾难性遗忘」,会对人工智能系统稳定运行产生不利影响。为此,人工智能迫切需要借鉴生物系统中的微观、介观、宏观等多尺度神经可塑性融合计算机制。

据介绍,生物系统中常见的多巴胺、血清素等神经调质物,往往经由特定的腺体释放,并远程弥散、投射到一定范围内的目标神经元群体,且根据调质浓度水平的不同,对局部的神经元可塑性、突触可塑性等产生多种复杂的调制影响。

此项研究中,科研团队在上述生物神经调制机制的启发下,整合得到 NACA。科研团队随后在典型的图片和语音模式识别任务中对该新型类脑学习方法进行了评估,评估结果显示,其与传统算法相比,具有更低的能耗,且可以极大地缓解「灾难性遗忘」问题。

「该新型类脑学习方法是一类生物合理的全局优化算法,具备纯前馈学习、低训练能耗、支持动态连续学习等特征,有望进一步引导新型类脑芯片的设计。」文章通讯作者、中国科学院自动化研究所研究员徐波说。

相关推荐
免责声明
本文所包含的观点仅代表作者个人看法,不代表新火种的观点。在新火种上获取的所有信息均不应被视为投资建议。新火种对本文可能提及或链接的任何项目不表示认可。 交易和投资涉及高风险,读者在采取与本文内容相关的任何行动之前,请务必进行充分的尽职调查。最终的决策应该基于您自己的独立判断。新火种不对因依赖本文观点而产生的任何金钱损失负任何责任。