最新评测对主流大模型幻觉问题进行了评估
如何准确评估和解决大语言模型中的幻觉问题已成为一个至关重要的挑战。近日,复旦大学与上海人工智能实验室构建了针对中文大模型的幻觉评测数据集HalluQA,对业界主流的大模型进行了评估。
HalluQA采用无幻觉率来评估大模型的优劣。无幻觉率越高代表模型幻觉越低,事实准确性越高。在评测的24个主流大模型中,包括百度文心一言ERNIE-Bot、百川Baichuan、智谱ChatGLM、阿里通义千问和GPT-4等。
从评测结果来看,幻觉问题对大模型来说尚有困难,有18个模型的无幻觉率低于50%。在幻觉消除上,具备检索增强能力的大模型优势明显,在所有模型评测中,文心一言在整体幻觉问题解决方面表现突出,排名第一,整体无幻觉率为69.33%。
行业普遍认为,幻觉问题对于大模型在多个领域的落地都可能产生影响,包括客户服务、金融服务、法律决策和医疗诊断等。因此解决幻觉问题越好的大模型,才具备更强的产业落地价值。
(文章来源:新华网)
相关推荐
- 免责声明
- 本文所包含的观点仅代表作者个人看法,不代表新火种的观点。在新火种上获取的所有信息均不应被视为投资建议。新火种对本文可能提及或链接的任何项目不表示认可。 交易和投资涉及高风险,读者在采取与本文内容相关的任何行动之前,请务必进行充分的尽职调查。最终的决策应该基于您自己的独立判断。新火种不对因依赖本文观点而产生的任何金钱损失负任何责任。