谷歌已利用DeepMindAI对数千种新材料进行了分析预测
原标题:谷歌已利用 DeepMind AI 对数千种新材料进行了分析预测
IT之家 11 月 30 日消息,谷歌旗下的 DeepMind 利用人工智能(AI)预测了超过 200 万种新材料的结构,该公司表示这一突破性成果将推动现实世界的技术改进。
其相关研究成果已经在当地时间周三以题《An autonomous laboratory for the accelerated synthesis of novel materials》刊登于《自然》上。
DeepMind 研究员在论文中指出,其假设的近 40 万个材料设计中的大部分很快就可以在实验室条件下生产出来。这项研究可以为生产性能更好的电池、太阳能电池板和计算机芯片提供帮助。
通过使用 AI 预测这些新材料的稳定性后,DeepMind 表示下一步的研究重心将转向预测它们在实验室中合成的难易程度。
▲ 图源:nature
实际上,新材料的发现和合成其实是一个十分昂贵且耗时的过程,例如我们目前随处可见的锂离子电池的商业应用过程经历了大约 20 年的时间,其间耗费无数成本与心血。
“我们希望通过实验、自主合成和机器学习模型的巨大改进,将这个 10 到 20 年的时间缩短到一个更容易控制的范围”,DeepMind 的研究员 Ekin Dogus Cubuk 说道。
据介绍,DeepMind 的 AI 是基于 Materials Project 数据进行训练的。这是一个于 2011 年在劳伦斯伯克利国家实验室成立的国际研究组织,目前拥有约 5 万种已知材料的研究成果。
该公司表示,现在将与研究界分享其数据,以期加速材料发现的进一步突破。
“当涉及到成本增加时,行业往往有点风险规避,而新材料通常需要一段时间才能变得具有成本效益”,Materials Project 的负责人 Kristin Persson 说,“如果我们能进一步缩短这个时间,那就算是真正的突破了。”
图片及素材来源于网络,版权归原作者所有。
- 免责声明
- 本文所包含的观点仅代表作者个人看法,不代表新火种的观点。在新火种上获取的所有信息均不应被视为投资建议。新火种对本文可能提及或链接的任何项目不表示认可。 交易和投资涉及高风险,读者在采取与本文内容相关的任何行动之前,请务必进行充分的尽职调查。最终的决策应该基于您自己的独立判断。新火种不对因依赖本文观点而产生的任何金钱损失负任何责任。