强化学习与视觉语言模型之间的碰撞,UC伯克利提出语言奖励调节LAMP框架
在强化学习(RL)领域,一个重要的研究方向是如何巧妙的设计模型的奖励机制,传统的方式是设计手工奖励函数,并根据模型执行任务的结果来反馈给模型。后来出现了以学习奖励函数(learned reward functions,LRF)为代表的稀疏奖励机制,这种方式通过数据驱动学习的方式来确定具体的奖励函数,这种方法在很多复杂的现实任务中展现出了良好的性能。
文章链接:
https://arxiv.org/abs/2308.12270代码仓库:
https://github.com/ademiadeniji/lamp
本周上新!
TechBeat是由将门创投建立的AI学习社区(www.techbeat.net)。社区上线500+期talk视频,3000+篇技术干货文章,方向覆盖CV/NLP/ML/Robotis等;每月定期举办顶会及其他线上交流活动,不定期举办技术人线下聚会交流活动。我们正在努力成为AI人才喜爱的高质量、知识型交流平台,希望为AI人才打造更专业的服务和体验,加速并陪伴其成长。
投稿内容
// 最新技术解读/系统性知识分享 //
// 前沿资讯解说/心得经历讲述 //
投稿须知
稿件需要为原创文章,并标明作者信息。
我们会选择部分在深度技术解析及科研心得方向,对用户启发更大的文章,做原创性内容奖励
投稿方式
发送邮件到
chenhongyuan@thejiangmen.com
或添加工作人员
>>> 添加小编
相关推荐
- 免责声明
- 本文所包含的观点仅代表作者个人看法,不代表新火种的观点。在新火种上获取的所有信息均不应被视为投资建议。新火种对本文可能提及或链接的任何项目不表示认可。 交易和投资涉及高风险,读者在采取与本文内容相关的任何行动之前,请务必进行充分的尽职调查。最终的决策应该基于您自己的独立判断。新火种不对因依赖本文观点而产生的任何金钱损失负任何责任。