首页 > 资源库 > 研究论文 > EvaluatingtheAbilityofLargeLanguageModelstoGenerateVerifiableSpecificationsinVeriFast

EvaluatingtheAbilityofLargeLanguageModelstoGenerateVerifiableSpecificationsinVeriFast

2024-11-19
Static verification is a powerful method for enhancing software quality, but it demands significant human labor and resources. This is particularly true of static verifiers that reason about heap manipulating programs using an ownership logic. LLMs have shown promise in a number of software engineering activities, including code generation, test generation, proof generation for theorem provers, and specification generation for static verifiers. However, prior work has not explored how well LLMs can perform specification generation for specifications based in an ownership logic, such as separation logic.To address this gap, this paper explores the effectiveness of large language models (LLMs), specifically OpenAI's GPT models, in generating fully correct specifications based on separation logic for static verification of human-written programs in VeriFast. Our first experiment employed traditional prompt engineering and the second used Chain-of-Thought (CoT) Prompting to identify and address common errors generated across the GPT models. The results indicate that GPT models can successfully generate specifications for verifying heap manipulating code with VeriFast. Furthermore, while CoT prompting significantly reduces syntax errors generated by the GPT models, it does not greatly improve verification error rates compared to prompt engineering.
Tags:
相关推荐