类GPT化学语言模型,9秒生成100种化合物,微软AI药物设计平台登Nature子刊
编辑 | KX以ChatGPT为代表的生成式 AI 技术正在彻底改变药物研发领域。生成式药物设计能够从零开始创建全新分子或化合物,而无需依赖于现有的模板或分子框架。然而,生成的分子的实用性往往有限,因为许多设计都集中在一组狭窄的药物相关特性,无法提高后续药物发现过程的成功率。为了克服这些挑战,微软研
编辑 | KX以ChatGPT为代表的生成式 AI 技术正在彻底改变药物研发领域。生成式药物设计能够从零开始创建全新分子或化合物,而无需依赖于现有的模板或分子框架。然而,生成的分子的实用性往往有限,因为许多设计都集中在一组狭窄的药物相关特性,无法提高后续药物发现过程的成功率。为了克服这些挑战,微软研
从计算机芯片、电池到太阳能电池板等现代技术都依赖于无机晶体。开发这些新技术,所需的晶体必须稳定,否则材料就会分解,而每个新的、稳定的晶体背后可能需要研究人员数月或者更久的艰苦实验。Google DeepMind 材料团队分享了 220 万颗新晶体的发现,相当于近 800 年的知识。
上周,Google DeepMind 和加州大学伯克利分校的一组研究人员在《Nature》杂志上发表了一篇备受期待的论文,提出了一个「自主实验室」——A-Lab,旨在利用 AI 和机器人技术加速新材料的发现和合成。被称为「自动驾驶实验室」的 A-Lab 展示了一个雄心勃勃的愿景