发现38万种新材料、17天自主合成41种新化合物,DeepMind一日两篇论文登上Nature
从计算机芯片、电池到太阳能电池板等现代技术都依赖于无机晶体。开发这些新技术,所需的晶体必须稳定,否则材料就会分解,而每个新的、稳定的晶体背后可能需要研究人员数月或者更久的艰苦实验。Google DeepMind 材料团队分享了 220 万颗新晶体的发现,相当于近 800 年的知识。
从计算机芯片、电池到太阳能电池板等现代技术都依赖于无机晶体。开发这些新技术,所需的晶体必须稳定,否则材料就会分解,而每个新的、稳定的晶体背后可能需要研究人员数月或者更久的艰苦实验。Google DeepMind 材料团队分享了 220 万颗新晶体的发现,相当于近 800 年的知识。
上周,Google DeepMind 和加州大学伯克利分校的一组研究人员在《Nature》杂志上发表了一篇备受期待的论文,提出了一个「自主实验室」——A-Lab,旨在利用 AI 和机器人技术加速新材料的发现和合成。被称为「自动驾驶实验室」的 A-Lab 展示了一个雄心勃勃的愿景
编辑 | KX以ChatGPT为代表的生成式 AI 技术正在彻底改变药物研发领域。生成式药物设计能够从零开始创建全新分子或化合物,而无需依赖于现有的模板或分子框架。然而,生成的分子的实用性往往有限,因为许多设计都集中在一组狭窄的药物相关特性,无法提高后续药物发现过程的成功率。为了克服这些挑战,微软研
编辑 | 萝卜皮生成合理的晶体结构通常是预测材料化学成分及其性质的第一步,但当前大多数预测方法计算成本高,制约了创新进程。通过使用优质生成的候选结构来预测晶体结构,可以突破这一瓶颈。