神经网络是怎样理解图片的?谷歌大脑研究员详解特征可视化
夏乙 编译整理量子位 出品 | 公众号 QbitAI我们总是听说人工智能在图像识别上超越了人类,刷脸也逐渐成了生活中司空见惯的事儿。这些图像识别技术背后,通常是深度神经网络。不过,神经网络究竟是怎样认识图像的?△特征可视化能够告诉我们神经网络在图片中寻找的是什么特征可视化这个强大的工具,就能帮我们理解神经网络内部的世界,知道它们的工作原理。谷歌研究员Christopher Olah、Alexander Mordvintsev和Ludwig Schubert今天在distill博客上发文深度探索了特征可视化这个问题,并顺便介绍了一些新trick。distill.pub是Olah等人今年3月推出的机器学习网站,会不定期发表文章,以可视化、可交互的方式来展示机器学习研究成果。原文地址:https://distill.pub/2017/feature-visualization/。其中包含大量可交互的示例图片。下面,量子位对这篇文章做个简要的介绍:在2015年谷歌推出的DeepDream基础上,经过AI研究界后来的共同努力,现在,计算机视觉模型中每一层所检测的东西都可以可视化出来。经过在一层层神经网络中的传递,会逐渐对图片进行抽象:先探测边缘,然后用这些边缘来检测纹理,再用纹理检测模式,用模式检测物体的部分……上面是ImageNet训练的GoogLeNet的特征可视化图,我们可以从中看出它的每一层是如何对图片进行抽象的。在神经网络处理图像的过程中,单个的神经元是不能理解任何东西的,它们需要协作。所以,我们也需要理解它们彼此之间如何交互。通过在神经元之间插值,我们可以更好地理解他们是如何彼此交互的。下图就展示了两个神经元是如何共同表示图像的。Distill原文中的这个例子,能够动手探索不同神经元组合在一起会得到什么结果。当然,这篇文章还介绍了一些特征可视化的trick。在进行特征可视化时,得到的结果通常会布满噪点和无意义的高频图案。这些高频图案似乎和strided convolution或者池化关系密切。反向传播时,每次strided convolution或池化都会在梯度幅值上创建棋盘格图案我们想更好地理解神经网络模型是如何工作的,就要避开这些高频图案。这时所用的方法是进行预先规则化,或者说约束。改变梯度也是一种方法,这种优化方法称为预处理(preconditioning)。当然,了解神经网络内部的工作原理,也是增强人工智能可解释性的一种途径,而特征可视化正是其中一个很有潜力的研究方向,谷歌的几位研究员将其视为帮人类理解神经网络的一个基础模块,可以与其他工具结合使用。
相关推荐
- 免责声明
- 本文所包含的观点仅代表作者个人看法,不代表新火种的观点。在新火种上获取的所有信息均不应被视为投资建议。新火种对本文可能提及或链接的任何项目不表示认可。 交易和投资涉及高风险,读者在采取与本文内容相关的任何行动之前,请务必进行充分的尽职调查。最终的决策应该基于您自己的独立判断。新火种不对因依赖本文观点而产生的任何金钱损失负任何责任。