谷歌DeepMind给AGI划等级,猜猜ChatGPT在哪个位置
AGI 该如何划分,谷歌 DeepMind 给出了标准。
我们到底该如何定义 AGI(通用人工智能)?如果你要求 100 位 AI 专家进行解答,你可能会得到 100 个相关但不同的定义。现阶段,AGI 是 AI 研究中一个重要且存在争议的概念,有研究者认为 AGI 已经出现在最新一代大语言模型(LLM)中;还有一些人预测人工智能将在大约十年内超越人类,甚至断言当前的 LLM 就是 AGI。深入理解 AGI 的概念很重要,因为它映射了人工智能所要达到的目标、对事物的预测以及带来的风险。我们该如何划分 AGI 等级呢?就像自动驾驶等级(如 L0 无自动驾驶)一样,这种级别的划分对人与人之间的沟通能力、制定规则和定义自动驾驶目标非常有用。本文,来自 Google DeepMind 的研究者提出了类似的 AGI 等级,根据划分原则,ChatGPT 被划分为 L1 Emerging AGI,Imagen 是 L3 Expert Narrow AI,AlphaGo 被划分为 L4 Virtuouso Narrow AI。具体而言,他们提出了一个框架,用于对 AGI 模型进行分类。Google DeepMind 希望这个框架能够以类似于自动驾驶水平的方式发挥作用,从而提供一种通用语言来比较模型、评估风险和衡量 AGI 的进展。为了开发这个框架,DeepMind 对 AGI 的现有定义进行了分析,并提炼出了六个原则:关注模型能力,而不是过程。注注通用性和性能。关注认知和元认知任务。关注潜能,而不是部署。关注生态的有效性。关注 AGI 发展道路,而不是只关心终点。在这些原则的基础之上,DeepMind 从性能和通用性两个维度提出了「AGI 等级(Levels of AGI)」。Level 0:无 AI(No AI),如 Amazon Mechanical Turk;Level 1: 涌现(Emerging),与不熟练的人类相当或比之更好, 如 ChatGPT、Bard、Llama 2 ;Level 2: 有能力(Competent),达到 50% 的人类水平,广泛任务上还没实现;Level 3: 专家(Expert),到达 90% 的人类水平,广泛任务上还没实现, Imagen、Dall-E 2 在特定任务上已经实现;Level 4: 大师(Virtuoso) ,达到 99% 的人类水平,在广泛任务上还没实现,Deep Blue 、AlphaGo 在特定任务上已经实现;Level 5: 超人类(Superhuman),胜过 100% 人类,广泛任务上还没实现,在一些任务范围内,AlphaFold 、AlphaZero 、 StockFish 已经实现。相关推荐
- 免责声明
- 本文所包含的观点仅代表作者个人看法,不代表新火种的观点。在新火种上获取的所有信息均不应被视为投资建议。新火种对本文可能提及或链接的任何项目不表示认可。 交易和投资涉及高风险,读者在采取与本文内容相关的任何行动之前,请务必进行充分的尽职调查。最终的决策应该基于您自己的独立判断。新火种不对因依赖本文观点而产生的任何金钱损失负任何责任。
热门文章
